The Wouthuysen Equation

Michiel Hazewinkel
CWI, Department Algebra & Geometry,
Kruisfaan 413, 1098 SJ Amsterdam,
The Netherlands

Dedication. | dedicate this paper to Prof. P.C. Baayen, at the occasion of
his retirement on 20 December 1994. The beautiful equation which forms
the subject matter of this paper was invented by Wouthuysen after he retired.

Abstract.

The four complex variable Wouthuysen equation arises from an original
space-time lattice approach to spinor waves and elementary particles. Here
the complete space of solutions is described. It consists of one isolated point
and one branched S4-covering-space over the circle with 8 branching points
of order 6, 24 branching points of order 4 and 12 “turning points”’. The

24 branching points of order 4 are also turning points for two of the four
branches.

1. 'I'THE EQUATIONS
The equations are for four complex variables of unit norm

QW(Z%+Z§+Z§+22) — (Zl+22+23+24)

(1.1)
+ (2122 + 2123 + 2124 + 2923 + 2924 + 2324) = 0
[z1]] = ||2z2|| = ||zs|| = ||z4|| = 1 (1.2)
with in addition a stationary phase condition
21292324 = 1 (1.3)

In terms of real parameters. There are 8 parameters and (1.1), (1.2) together
give 6 conditions (2 from (1.1) and 1 each from ||z;|| =1, t =1,...4). Given
(1.2), (1.3) only gives one extra condition. So by equation counting one could
expect 1-dimensional families of solutions. This does indeed turn out to be the
case.
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This set of solutions forms a single S orbit of size 12. As it turns out (2.2)
- (2.5) are the only solutions with at least one z; = 1; see section 3 below tor

details.

|
F
}l

2.6 Solutions with additional symmetry (besides those in 2.1)

-y ﬁm\f 3 i ":'“}\ﬁ’fhﬂ ] = V’FME {B”
3 3 )

A

This solution satisfies (up to permutations), :p = —2z;. 23 = —23 and 18 In
fact the only solution with the property. It also satisfies (up to permutations),

<Y = Jly~4 T ~3-

3 1 -1 =
& -

o [ 2BV e 21D — V3

=V
° (2.8)

(up to permutation). This solution also has 2z, = 2y, Iy = z3 and there is
in fact. besides (2.2). (up to permutation) one one-dimensional family of such
solutions on which both (2.7) and (2.8) are located.

2.9 Solutions with zy + 2o + 23+ 24 = (0
Under this additional condition (zy + ... + 23)° = U, 80 21 + ... +
—2(z132 + ...+ 2324), SO

£
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2
2129 + ...+ 2324 = ----3— (210)

Also, using z1222324 = 1, 212023+ 212324+ 2120224 + 222324 = z;"l +Z§1 —I—z;l -+
— 1

2] = Z4+ 29+ Z3 + Z; = 0 because ||z;|| = 2;Z; = 1. Hence 212023 + 212224 +
212324 + 202324 = 0. Thus the z1,... 24 are solutions of the equation
4 2 9
2" — 32 +1=0 (2.11)

The solutions of this are

1 2
~ 4+ ZV/2 2.12
;£ 3V2 (2.12)

and so the z1, z9, 23, 24 are equal to

1 2 1 1
4+ 292 = 4= -y, 2.
+ 3 - 3\/— 3 3 & 32,\/6 (2.13)

which is again the special solution (2.7).

2.14 Solutions with at least one z; equal to —1.

There are (up to permutations) three solutions with at least one z; = —1.
These are

=2 = —1, 24 = (T+V33) '3+ V33 +2j\/10 + 2V33)  (2.15)

making up one S4-orbit of size 12, and

1 1. 1 1. 1 1.

—1, g = 5 7 "2""3\/§= 5\/§+ 57 “5\/3“ 57 (2.16)
1 1 1 1 . 1 1 .

"""17 CG — 5 T+ "2"]\/5, "2"\/§"“ 5 . “"'2"\/§+ “é"j (2.17)

and all permutations (making up two complex conjugate S4 orbits of size 24
each).

3. SOLUTIONS WITH AT LEAST ONE z; EQUAL TO 1.
Permuting the z; if necessary, assume z; = 1. Then (1.1) reduces to

25 + 25 + 25 = 2223 + 2224 + 2324 (3.1)
This scales. So take z = zo and consider
1—|—Z§ +Z§ = 23 + 24 + 2324 (32)

Let wy = 23 — 1, wg = 24 — 1. Then (3.2) turns into

325



4
et
e
i
" 5
£
£
Ay
il
e
e

o
g
o
B
==
o
Fourt w2
el
R
b
gy
=8y
“gmF
P i
A
ST
yeead
o
g
P
LS
Buimsbodt
SR

e
==

=
P
e
s E
-
gt
o
W
o’
2
E&é
a2
e
wpd
it
e
frey
4
o
fespuansd
P
et
s
o
%,
e
=
o=

_ - | T X . ey ‘ ” S S T N
where (g = & + :% 7V i1s a 6-th root of unity. Thus the solutions of {(3.2) are of

the form

m=ldw, y=14+wg. wel (3.6)

Uty =W, Wy = M?{:@ % 3??

From (3.7) it follows that wy and w3 make an angle of 60° with one another,
and that they are of equal length. For z5 = 1 + wy, 23 = 1 + w4 to be on
the unit circle, w3 and wy must be on the circle of radius 1 with centre at —1.
Hence they must be conjugate and if readily (see Figure 1) follows that the

FiGuRre 1.

only possibilities are

3

Wy, Wy == — 5 + j'\fﬁ

o

or w3, uy =0

(e.g. because the triangle formed by 0, w3, wy must have all sides equal) and
hence there are only the three possibilities

M

* i"}
- 'hl v.'rh ﬁd
u‘%

<A,

- - » .
. “shalmikdoperes- " ey Rl 3 L] e HomaTIen-
(3 = (3. <4 = (37 <3 =4

| -
" $4 o \L3: :tg - Eq — 1

Thus the possible solutions of (3.1) are

326



(22,23, 24) = (2,2,2), (2,(32,(32), (2,(3z2,(52)

and the solutions of (1.1) - (1.2) with at least one 2; equal to 1 are (up to
permutations):

(l,z,z,z), z € (; (1,z,ng, C??z)., z & (C; (1,::, “323,(33)3 =N

The requirement (1.3), 21222324 = 1, translates in all these cases to » — 1,(3,C3
and putting this in gives the 4 solution orbits (2.2) - (2.5) listed above.

4. SOLUTIONS WITH NO z; EQUAL TO 1.

To study the solutions of (1.1) - (1.3) for which no z; is equal to 1, first use the
transformation

wi =z —1,i=1,2,3,4 (4.1)
(which has already proved to be useful above). This turns equation (1.1) into

2 2 2 2
Wy + Wy + W3 + Wy = Wi1We + WiWs + WiwWg + Wews + wowy + wywy(4.2)

The second tool is the Cayley transform ¢ : R — S* = {z € C: ||z|| = 1} given
by (see Figure 2)

r—17 . .
r)=-——-J=Vv-l 4.3
dr) =51V (4.3)
This mapping is 1-1 and onto St\{1}.
Let
gy =) =14 (4.4)
T + 7
Then
wi= 2 i1 4 (4.5)
s + 7
Set
w, =1;+73, 1=1,...,4 (46)

Then the equation (4.2) becomes

— - ~2 —~2 -1 ,—1 —1,,—1 -1, ~1
v12+v22+v3 +v, " =V Uy U Uy T ... T U3 Uy (4.7)
: : 1th 2.,02,,2,,2 t bt a)
Multiply this with vyvsv3vs, to obtain
2,2 , ‘
v%vgvg + *‘Uf'v%'vg =+ v%v%vg + 'Ui?fuzfug = vy Uav3Vy4 (V304 + ... +v102) (4.8)

Let ey, e, e3. €4 be the elementary symmetric functions in the vy,...,v4; 1.€.
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b(1) = -

FIGURE 2.

€1 = V1 + V2 + V3 + Vg, €2 = V1V2 + ... T V34,

(4.9)
€3 = V1V2V3 + ...+ VU2V3V4, €4 = V1V2V3Y4
Then (4.8) becomes
€§ = 3eqzey (410)

Now let fi, f2, fa, f4 be the elementary symmetric functions in the ry, 72, 73, 74,
ie. f1 =71+ 10+ T3+ 74, etc. Then

e1 = f1+47, ea=fao+37/1 -6 (4.11)
e3= fa+2jfao—3fi—4j, ea=fa+Jjfs—fo—I3f i +1.

Putting this into (4.10) gives the following equations for the f1, f2, f3, f4
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f:ziz +3fifa—f3 —5fo+2—-3fafs +18f4, =0

(4.12)
fofs+10f3 —3f1 —9f1fa =0
Now
(r1 = 3)(r2 = J)(r3 — j)(ra — 7)
21292224 = , _ LA, VLI 4 4.13
VR T i+ ) (e + ) (ra + 5) (ra + 7 (4.13)
Let

w=(ri =) (re—J)rs—Jg)ra—j)=fa—jfs—fo+ijfi+1 (4.14)

By (4.13), equation (1.3) means w = w and by (4.14) this means

fi=fs (4.15)
Putting this in (4.12) we see that there are two possibilities

fi=f=0 (4.16A)

fo=9fa—7 (4.16B)

In case A, the first equation of (4.12) becomes

f3 + (5+3fa)f2— (18fs+2) =0 (4.17A)
and in case B, the first equation of (4.12) becomes

f2=27f2 —30fs +3 =3(9fs — 1)(fa — 1) (4.17B)

So, to find all solutions of (1.1) - (1.3) for which no z; is equal to 1 it is necessary
and sufficient to consider the equation

rt + f1r° + far? + far + fa =0 (4.18)

under the conditions
Family A : fi = fs=0and f5 + (5+3f4)fo — (18f4 +2) =0

Family B: f1 = f3, fo=9fs— 7, ff =27f7 —30fs +3 =3(9fs — 1)(fs — 1)

and to find out for which cases all four roots of (4.18) are real.
To conclude this section let’s find out whether the families A and B can
intersect. For an intersection we have f; = 0 = f3 and, hence from (4.17B),

fs =1/9,fa = —6; f4 =1, fo = 2 Then and only then are all four of (4.16) -
(4.17) satisfied.

If fa =1, fo =2, fi = f3 =0, The solutions of (4.18) are
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e, two pairs of colnciding non real solutions. This gives no solution to the
“mﬂhm se1 wq&mﬁ ion, but will still be usetull later
It fo =1/9, f, = — G, fi = f; = 0, the solutions of (1.18) are
l = 2 -1 = 2 \
= 7V 15 + 3V 31 A 3V 15— - % ) (4.20)

which are all four real and which give the special solution (2.8):

R b= 1 =
210 = (== 4+ =VIB) £ j(=V1H + =3,
L L g (4.21)
m S TRy 4+ (s~ 2 J/TE
234 =(—=— - =V1I3)x (- - -V1d
34 = 3R ) .N& 3 )
THE FAMILY A
In this case the equation becomes
r "%‘fg? + fq = (.
with
fi+(5+3f1)fa— (18f1+2) =0 (5.2)

We shall use f; as the main parameter. This will turn out to be the right
choice, even though (5.2) suggests that f; might be easier to work with.

For (5.1) to have four real roots, it is necessary and sufficient that f; >
0, f2 <0, f5 > 4f, (besides f> real). The conditions fq > 0 and fo < 0 imply

that only the solution

a 3 | N " q
fa= -3 ; fi= 359 fi+ 132fy + 33 (5.3)

of (5.2) qualifies, If f, is given by (5.3) then

f3 > 4{9}"; + 132f4 + 33) > 4[4

So, the family A consists of precisely one family of solutions parametrized
by f1 > 0. Because f§ > fi, the two solutions of

yo+ foy+ fa = (5.4)

are unequal. So the only case in which the four solutions of {5.1) can have two
or more equal is when f4 = 0. Then

e L
ri=ro=0, rgq = \/ 10 + 2v/33 (5.5)
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corresponding to the special solution (2.10) of the Wouthuysen equations.

6. THE FAMILY B
In this case the equation becomes

rd + fir® + for’ + fir + f4a =0 (6.1)
subject to following conditions on the coeflficients
fo=9fa—7, ff =3(fa—1)(9fs — 1) (6.2)

and the question is when (6.1) will have all solutions real. This certainly
requires f; to be real, which by (6.2) implies that f4 < 1/9, or f4 > 1. Thus
there are four subfamilies to be considered

fa>1, f1=1/27f7 —30fs+3 (B1)
faz1l, fi= _\/27f2“:““36}4 -P"-"“3 (B2)
fa< g, fi=1/2107—30f+3 (B3)
fa < é": f1= """"\/2‘7&2 — 3074 + 3 (B4)

Under (ry,72,73,74) +— (=71, —72,—T3,—T4), fo and f; remain the same and
fi1 and f3 change sign. Hence (B1l) (for a given value of f4) gives four real
solutions iff (B2) does so (for the same value of f4). Similarly for (B3) and
(B4). Thus it suffices to examine (B3) and (B1).

The discriminant of (6.1) is equal to

D= ]] (ri —m)? (6.3)

i< k
where 71,72, 73,74 are the four roots of (6.1). It turns out that under (6.2)
D= —-202f; —7f5 +8fs—3) = —=2"(fs — 1)%(2fs — 3). (6.4)

This is a substantial calculation but it is less surprising than it maybe looks.
First, D is of course a polynomial in the fy, fa, f3, f4 and it is homogeneous of
degree 12 where f; has weight 2, :=1,...,4. Under r; — —1;, 1 =1,...,4, D
remains invariant. As fi, fs change sign under r; — —7r; and fs, f4 remain
invariant, f; and fs can only occur in the monomials in D in the forms
f2, f1f3, f4. However, the substitutions (6.2) are not homogeneous so that
the degree could become as high as 12. The monomaials in the discriminant of
a fourth degree polynomial are of maximal degree 6 in f;, f3 combined. Thus
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a polynomial of degree 6 in f4 could occur. A final drop in degree of 3 occurs
because there are three coinciding roots at f4 = oco. Finally because there are
coinciding roots of (6.1) at f4 = 1 one of the roots of D must be 1.

For the subfamily (B3) (and (B4)) we have that at f4 = 1/9 there are four
different real solutions, see (4.20). Because D # 0 for —oco < fs < 1/9, this
must remain so for the whole family. Thus (B3) and (B4) represent two one
dimensional families of solutions to the Wouthuysen equations parametrized by
fa < 5.

For9f4 > 1, i.e. the families (B1) and (B2), D = 0 at f4 = 3/2. For this

value of f; (6.1) becomes (for (B1))

D
7‘4+-2—-\/§r3+61/27’2+g—\/§r—|—g—=0 (6.5)

with the solutions
1 1 1 1
—V3, —/3, -—-Z\/§+ ij/é, _Z\/’é_—- Zj\/5 (6.6)

At f4 = 1, equation (6.1) has four non real solutions, viz. j,7,—7,—J. S0
for 1 < f4 < 3/2, it remains the case that (6.1) has four non real solutions
(because for this to change D must assume the value zero). As D # 0 for
3/2 < f4 < o0, the family (B1l) and (B2) have for these values of f4 either four
non real solutions or two real and two non real (complex conjugate) solutions.
As it turns out the latter is the case. A numerical check shows e.g. that at
fa = 10 the four solutions are approximately

—47.287, —0.606, —0.564 == 0.177

In both cases (B1l) and (B2) do not contribute to solutions of the Wouthuysen
equation.

For later use we also need the solutions of the (B3) and (B4) families at f4 = 0.
The equation for the (B3) case then becomes

rd + V33 —7r?2 +vV3r =0 (6.7)
with solutions
0, V3, 2—+3, —2—+3 (6.8)

7. MATCHING THE SOLUTIONS WITH A z; EQUAL TO 1 TO THE A, B3, B4
FAMILIES

Under ¢ : R — S!, +00 goes to 1, and so does —oco. (So the true parameters
space is the circle ¢(R) = ¢({fs4})). To see how the solutions with a z; equal to
1 fit with the A, B3 and B4 families, it therefore suffices to study what happens

to the corresponding solutions as f4 — oo (for the A-family) and as f4 — —o0
(for the B3 and B4 families).
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7.1 The A-family for f4 — oo.
First consider an A-family of solutions

5 3 1
rt 4 f27‘2 +fa=0 fo= 5 T §f4 ~ 5 gff + 132 f4 4+ 33 (7.2)

As f4 — oo, f;"lfg goes to —3. Let s = r—*. Then the equation for s is

st+ filfas? + fit =0 (7.3)
which in the limit f4 — o0, goes to

s* —3s% =0 (7.4)

It follows that as f4 — oo, two solutions of (7.2) go each to —oo or +o00 and
the other two go to m%\/g, %\/g However, the four solutions of (7.2) cannot

cross as fq4 — o0o(f4 > 0), therefore the only possibility is that one goes to —o0
and the other to +o0.

S0 up to permutations the limit solutions are
1 1
(_O'Oa “§7 \/3-7 §\/§7 +O'O) (75)

which under ¢ : R — S! corresponds to the solutions (2.5)
(1,¢, ¢2, 1) (7.6)
where C — C3.

And indeed a small numerical check shows that for f4 = 103, 10°, respectively,
the solutions of (7.2) are, respectively, approximately equal to

—54.890, —-0.576, 0.576, 54.890

—547.735, —0.577, 0.977, 547.735

while -:-31-—\/5 1s about 0.577.

7.7 The B3-family for f4s — oo.
Now let’s consider a B3-family of solutions

r? 4 fl"“3 + f27“2 + fir + f4a =0,
(7.8)

fo=9fs =7, f1 = /27f2 —30fu + 3

as f4 ~—> oo(f4 < 1/9). As f4 — 0O, because f1 X 3\/§|f4|,
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FIGURE 3.

global picture it sufhces to identify the points above f4 = *o00 according to

the coordinates attached to them. The complete topological picture is given in
Figure 4.
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As above let ( = (3
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The solution (1,1,1,1) is completely isolated, and all others are connected

by the scheme drawn above, where the dotted lines indicate identifications.
In the above (see also Figure 5)

¢(—t3)

And further, using the notation o(s1, 82, 83, Sq4) = (80(1), So(2)1 Sa(3): 80(4))1

1|

[

| I I

q.')(““tg, t3: mt3a tZ)
d(t2, —t3, +t3, —t2)
d(t2, +t3, —t3, —t2)
¢(“t27 Mt3at23 t3)
o(—ta,t3,12, —t3)
d)(t29 “t3a '_tZ: tB)
¢(t27 +t37 _tQa —t3)
d(—t3,t3, —t2,t2)
d(ts, —t3, —t2,t2)
d(—t3,t3,t2, —t2)
¢(t37 mt37 t27 mt2)
(b(mtg,, t?a t3: mt2)
¢)(t37 t?a “"t37 """t2)
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In words, the space of solutions of the Wouthuysen equation consists of one
isolated point, (1,1,1,1), and a branched curve. This branched curve, and the
isolated point, come with a natural projection to the circle. The group 5S4 acts
on the space of solutions, leaving the isolated point invariant. The projection
to the circle is invariant under this action. Let S denote the solution space and
m:S5 — S = RU{oo} this invariant projection.

In terms of the r-coordinates, RU{oc}, —o0 = +oc, the picture is as follows

(i) Above all 1/9 < y < oo, there are 24 points which form one S;-orbit. The
inverse under w of a small enough neighborhood of such a points consists
of 24 disjoint intervals.

(ii) Above y = oo (corresponding to 1 under the Cayley transform) there are
21 points: the isolated solution point (1,1,1,1), which is an invariant
point of the S*-action, an S*-orbit of size 12, and two complex conjugate
Ss-orbits of size 4. These are branching points of order 6. Locally around
one of the points of the orbit of size 12, the branched solution curve looks
like an interval turning back. Locally around a point of the two S4-orbits
of size 4 the picture is a six branched star as depicted below. Thus the
inverse image of a small interval around the point oo of the circle RU {0}

looks like the disjoint union of 12 intervals, 8 six branched stars and one

1solated point.

338



(iii)

(iv)

(V)

(8)

(12)

® (1)

Above y = %— there are 24 points which form a single S;-orbit. They are
all branching points of order 4. The inverse of a small interval around
y = 1/9 looks like the disjoint union of 24 4-branched stars like depicted

below.
—>— (24)

Above all 0 < y < 1/9 there are 72 points, which from three Ss-orbits:
two of these are complex conjugate, the third is invariant under complex
conjugation. The inverse image of a small enough interval around these
y looks like 72 disjoint copies of that interval

—_— (72)

Above y = 0 there are 60 points. They form one orbit of size 12 and two
complex conjugate orbits of size 24. The points from the orbit of size 12
are “turning points” in a sense which should be clear from the picture
below. The inverse image of a small interval around such a point consists
of 60 disjoint intervals of which 12 are “turn back” intervals.

< (12)
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(vi) Above —00 < y < 0 there are 48 points which form two complex conjugate
orbits of size 24 each. The inverse image of a small interval aroun

, ¥
y looks like the disjoint union of 48 copies of that interval

,

e

-

act, the group Z/(2) x S4 acts on the space of solutions and = : § — S’
ariant under this action (of a group of order 48).
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